Reg. No. :			H				
	 	_				 	

Question Paper Code: 80130

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Third Semester

Electrical and Electronics Engineering

EE 8391 — ELECTROMAGNETIC THEORY

(Regulation 2017)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. State the condition for the vector F to be solenoidal.
- 2. What are the sources of electric field and magnetic field?
- 3. Why water has much greater dielectric constant than mica?
- 4. What are the significant physical differences between Poisson's and Laplace's equations?
- 5. State Gauss law for magnetic field.
- 6. State the conservative property of electric field.
- 7. What is the effect of permittivity on the force between two charges?
- 8. What is main effect of eddy current?
- 9. Mention the properties of uniform plane wave.
- 10. Define Poynting vector.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Express vector \overline{B} in cartesian and cylindrical coordinate systems. Given $\overline{B} = \frac{10}{r} \overline{a}_r + r \cos \theta \, \overline{a}_\theta + \overline{a}_\varphi$ then find \overline{B} at (-3, 4, 0) and (5, $\pi/2$,-2).

Or

(b) A charge of 1 C is at (2, 0, 0). What charge must be placed at (-2, 0, 0) which will make y component of total \overline{E} zero at the point (1, 2, 2)?

12. (a) Consider an infinite line charge with density ρ_L C/m, along z-axis. Obtain the work done if a point charge Q is moved from r = a to r = b along a radial path.

Or

- (b) V = x y + xy + zV, find \overline{E} at (1, 2, 4) and the electrostatic energy stored in a cube of side 2 m centered at the origin.
- 13. (a) A 'z' directed current distribution is given by, $\overline{J} = (r^2 + ur)$ for $r \le a$. Find \overline{B} at any point $r \le a$ using Ampere's circuital law.

Or

- (b) A circular loop of radius r and current I lies in z = 0 plane. Find the torque which results if the current is in \overline{a} \emptyset and there is a uniform field $\overline{B} = \frac{B_0}{\sqrt{2}} (\overline{a}_x + \overline{a}_z) T.$
- 14. (a) A conducting cylinder of radius 7 cm and height 50 cm rotates at 600 rpm in a radial field $\overline{B} = 0.10 \, \overline{a}_r \, T$. Sliding contacts at the top and bottom are used to connect a voltmeter as shown in the figure. Calculate induced voltage.

Oı

- (b) A parallel plate capacitor with plate area of $5\,\mathrm{cm}^2$ and plate separation of 3 mm has voltage 50 sin 103t V applied to its plates. Calculate displacement current assuming $\varepsilon = 2\varepsilon_0$.
- 15. (a) Explain in detail the behavior of plane waves in lossless medium.

Or

(b) Starting from Maxwells equations derive the expression for Poynting vector and explain its significance.

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Find the capacitance of conducting sphere of 2 cm in diameter, covered with a layer of polyethelene with $\epsilon_r = 2.26$ and 3 cm thick.

Or

(b) The region between two concentric right circular cylinders contains a uniform charge density ρ . Solve the Poisson's equation for the potential in the region.

80130

